
Sparse Distributed Memory

Principles of Operation

M.J. Flynn

P. Kanert,a

N. Bhadkamkar

December 1989

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.53

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-188901) SPARSE OISTRIBUTEO MEMORY:

PRINCIPLES AND OPERATION (Research Inst.

for Advanced Computer Science) 57 pCSCL 09B

N92-I0294

Unclas

G3/60 0043103

Research Institute for Advanced Computer Science
An Institute of the Universities Space Research Association

Sparse Distributed Memory:

Principles and Operation

M.J. Flynn, * P. Kanerva, ** and N. Bhadkarnkar*

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.53
December 1989

Abstract. Sparse distributed memory is a generalized random-access

memory (RAM) for long (e.g., 1,000 bit) binary words. Such words can

be written into and read from the memory, and they can also be used to

address the memory. The main attribute of the memory is sensitivity to

similarity, meaning that a word can be read back not only by giving the

original write address but also by gbiing one close to it as measured by
the Hamming distance between addresses.

Large memories of this kind are expected to have wide use in speech
recognition and scene analysis, in signal detection and verification, and in

adapt ire control of automated equipment---in general, in dealing with
real-world information in real time.

The memory can be realized as a simple, massively parallel computer.

Digital technology has reached a point where building large memories is

becoming practical. This research project is aimed at resolving major
design issues that have to be faced in building the memories. This report

describes the design of a prototype memory with 256-bit addresses and

from 8K to 128K locations for 256-bit words. A key aspect of the design

is extensive use of dynamic RAM and other standard components.

*Work reported herein was conducted primarily at Stanford University, supported in

part by the National Aef,,nauties and Spade Administration (NASA) under contract
NAGW 419 and was published concurrently at Stanford University as Technical Report
CSL-TR-,Sg-400.

**A portion of the work reported herein was conducted at RIACS, supported in part by

Cooperative Agreement NCC 2-387 between NASA and the Universities Space Research

Association (USRA].

Contents

Acknowledgements

1

vii

1.5

1.6

1.7

1.8

1.9

1.10

2

Introduction to Sparse Distributed Memory 1

I.i Introduction 1

1.2 Rationale for special hardware 2

1.3 Basic concepts and terminology 3

1.3.1 Distance from a memory location 4

1.4 Basic concepts 5

1.4.1 A simple example 5

1.4.2 A simple solution that does not work 7

1.4.3 The SDM solution 8

1.4.4 Differences between the simple example and the real model . . . 11

Autoassociative dynamics 14

Heteroassociative dynamics (sequences) 16

1.6.1 Folds 19

Physical description 22

Functional description 24

1.8.1 Tags 24

Operational description 25

1.9.1 Set-up 26

1.9.2 Operation 26

Summary 28

Hardware Description 29

2.1 The Executive module 29

2.2 The Control module 31

,,,

IU

,_)m.14..,._L..l_.'![_Tl0qt,,l,tf litAal(FRECE',-.)ib:GPAGE IBLA;CX NOT FIL.rv'iED

iv CONTENTS

3

2.3 The Stack module 32

2.4 The Address module 32

2.4.1 Overview and board floorplan of Address module 33

2.4.2 The Clock/Sequencer 39

2.4.3 The Hard Address Memory 39

2.4.4 The ALU 39

2.4.5 The Bit Counter 40

2.4.6 The Tag Cache 40

2.4.7 The Bus Interface 40

2.4.8 Operation of the Address module 41

2.4.9 Additional hardware 42

of the SDM 43

Programmer's Interface 43

3.1.1 Data Types 43

3.1.2 Overview of Routines 44

3.1.3 Descriptions of Routines 45

Bibliography 50

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

Example of a location 5

Example of a location 6

Example using SDM 8

Example using SDM 10

Example using SDM 10

Example of data selection in SDM 12

Space of locations. 13

SDM storage activation radius 13

SDM retrieval activation radius 13

Overlapping radii 15

SDM autoassociative mode 17

SDM heteroassociative mode: storage 18

SDM heteroassociative mode: retrieval 19

Folds 21

Physical and block diagrams of SDM prototype 23

Relation between the Address and Stack modules 24

Physical arrangement of hard addresses in Address module 25

What the Stack module does during a write operation 27

What the Stack module does during a read operation 27

2.1 Floorplan 36

2.2 State transition diagram of Address module 38

List of Tables

1.1 Realizing sparse distributed memory in different kinds of hardware 3

1.2 Parameters of $DM prototype 21

1.3 Hardware and software components for prototype system 22

2.1 Reg/ster addresses 33

vi

vii

Acknowledgements

We would like to thank the following people at Stanford and at RIACS who have

contributed to the Sparse Memory project through design effort, advice, and writing

portions of this report: Bahrain Ahanin, Brian Flachs, Paul Flaherty, Philip Hickey,

Alan Kobrin, Andrd Lamothe, Eric Lochner, Kurt Webber, Bob Zeidman, and Andrew

Zimmerman. Finally, Susan Gere assembled and edited the various versions of the

document.

Chapter 1

Introduction to Sparse

Distributed Memory

1.1 Introduction

Sparse distributed memory (SDM) is a generalized random-access memory (RAM) for

long (e.g., 1,000 bit) binary words. These words serve as both addresses to and data

for the memory. The main attribute of the memory is sensitivity to similarity, meaning

that a word can be read back not only by giving the original write address but also by

giving one close to it, as measured by the number of mismatched bits (i.e., the Hamming

distance between addresses).

The theory of the memory is mathematically complete and has been verified by

computer simulation. It arose from the observation that the distances between points

of a high-dimensional space resemble the proximity relations between concepts in human

memory. The theory is also practical in that memories based on it can be implemented

with conventional RAM-memory elements. The memory array in the prototype memory

makes extensive use of 1 M-bit DRAM technology, with array modules in concurrent

execution. Consequently, the prototype is inexpensive compared to implementations of

the memory on systolic-array, "connection machine," or general-purpose equipment.

In applications of the memory, the words are patterns of features. Some features

are produced by a sensory system, others control a motor system, and the rest have

no immediate external significance. There is a current (1,000 bit) pattern, which is

the current contents of the system's focus. The sensors feed into the focus, the motors

are driven from the focus, and the memory is accessed through the focus. What goes

on in the world--the system's "subjective" experience--is represented internally by a

sequence of patterns in the focus. The memory stores this sequence and can recreate

it later in the focus if addressed with a pattern similar to one encountered in the past.

Thus, the memory learns to predict what is about to happen.

2 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

Wide applications of the memory would be in systems that deal with real-world

information in real time. Such information is rich, varied, incomplete, unpredictable,

messy, and dynamic. The memory will home on the regularities in the information and

will base its decision on them. The applications include vision--detecting and identi-

fying objects in a scene and anticipating subsequent scenesmrobotics, signal detection

and verification, and adaptive learning and control. On the theoretical side, the working

of the memory may help us understand memory and learning in humans and animals.

For an example, the memory should work well in transcribing speech, with the train-

ing consisting of "listening" to a large corpus of spoken language. Two hard problems
with natural speech are how to detect word boundaries and how to adjust to different

speakers. The memory should be able to handle both. First, it stores sequences of pat-

terns as pointer chains. In training--in listening to speech--it will build a probabilistic

structure with the highest incidence of branching at word boundaries. In transcribing

speech, these branching points are detected and tend to break the stream into segments

that correspond to words. Second, the memory's sensitivity to similarity is its mecha-

nism for adjusting to different speakers--and to the variations in the voice of the same

speaker.

1.2 Rationale for special hardware

Although the sparsedistributedmemory is a generalizedrandom-access memory, its

most important propertiesare not demonstrated by ordinary random accesses.For

thosepropertiesto appear,the memory addressesmust be at least100 bitsand prefer-

ably severalhundred, and any read or writeoperationmust manipulate many memory

locations.When theseconditionsare met, the memory can use approximate addresses

(in the Hamming-distance sense) to retrieve exact information as well as statistically

abstracted information that represents natural groupings of the input data. Intelligence

in natural systems is founded on such properties.

Simulation of the memory on a conventional computer is extremely slow. A properly

designed, highly parallel hardware is absolutely necessary for dealing with practical
problems in real time. Table 1.1 shows the estimated performance of different sized

memories on a range of hardware implementations.

The Stanford prototype is designed to be a flexible, low-cost model of projected

large-scale implementations. Experiments performed with the prototype are intended

to develop better applications support and especially faster, more efficient implementa-
tions.

1.3. BASIC CONCEPTS AND TERMINOLOGY 3

Table i.I:Realizingsparsedistributedmemory in differentkinds of hardware.

Dimension, Number of Cycles

Hardware n locations,m per second Task

Dedicated DEC 2060 128 10,000 .2-1

32-node InteliPSC 128

16K-processor 200

Connection Machine

Stanford Prototype 256

PresentVLSI potential 1,000

50,000 1-5

60,000 50-200

80,000 50

100,000,000 1,000

Demonstrate con-

vergence properties

of the memory

Simple learning by
trial and error

Word parsing in

compacted text

Word parsing in

compacted text and

possibly in speech

Language

understanding (?)

1.3 Basic concepts and terminology

This chapter presents a nonmathematical description of the operating principles behind

SDM. Readers desiring a mathematical description of these concepts should consult the

book by Kanerva [4]. The papers by Keeler [5] and Chou [1] contrast the properties

of SDM with a neural-network model developed by Hopfield [3] that resembles SDM in
certain aspects of its operation.

There are six concepts that are central to describing the behavior of SDM. These are:

• Writing to the memory.

• Reading from the memory.

• Address pattern (or reference address, or retrieval cue, or cue).

• Data pattern (or contents, or data word).

• Memory location (or hard location) and hard address.

• Distance from a memory location.

The first two are operations on the memory, the middle two are external to the

memory and have to do with the external world, while the last two are concepts relating
to the internal aspects of the memory. Each of these is explained in more detail below.

Writing is the operation of storing a data pattern into the memory using a particular
address pattern.

4 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

Reading is the operation of retrieving a data pattern from the memory using a par-

ticular address pattern.

Address Pattern. An N-bit vector used in writing to and reading from the memory.

The address pattern is a coded description of an environmental state. (In the
prototype, N - 256.)

Data Pattern. An M-bit vector that is the object of the writing and reading oper-

ations. Like the address pattern, it is a coded description of an environmental

state. (In the prototype, M = 256.)

Memory location. SDM is designed to cope with address patterns that span an enor-

mous address space. For example, with N = 256 the input address space is 22se.

SDM assumes that the address patterns actually describing physical situations

of interest are sparsely scattered throughout the input space. It is impossible to

reserve a separate physical location corresponding to each possible input; SDM

implements only a limited number of physical or "hard"' locations. The physical

location is called a memory (or hard) location.

Every hard location has associated with it two items:

* A fixed hard address, which is the N-bit address of the location.

, A contents portion that is M-bits wide and that can accumulate multiple

M-bit data patterns written into the location. The contents' portion is not

fixed; it is modified by data patterns written into the memory.

1,3.1 Distance from a memory location (to the reference address)

The distance from a memory location to a reference address used in either a read or

write operation is the Hamming distance between the memory location's hard address

and the reference address. The Hamming distance between two N-bit vectors is the

number of bit positions in which the two differ, and can range from 0 to N. SDM uses

the Hamming measure for distance because it is convenient for vectors consisting of 0s

and ls. However, other measures could equally well be used.

The operation of the memory is explained in the remainder of this chapter. However,
the following is a brief preview:

• During a write, the input to the memory consists of an address pattern and a

data pattern. The address pattern is used to select hard locations whose hard

addresses are within a certain cutoff distance from the address pattern. The data
pattern is stored into each of the selected locations.

• During a read, an address pattern is used to select a certain number of hard

locations (just like during a write). The contents of the selected locations are

1.4. BASIC CONCEPTS

location oddraee

II countere neeoclated with the location

i

Figure 1.h Example of a location.

bitwise summed and thresholded to derive an M-bit data pattern. This serves as

the output read from the memory.

How this works is explained in the following section.

1.4 Basic concepts

1.4.1 A simple example

These concepts and the basic mechanisms of SDM will be illustrated by a stylized

example. For the sake of simplicity, assume the following:

1. Input vectors consist of:

(a) an integer address that can range from 1 to 1000, and

(b) a data pattern (or content portion) that is an 8-bit vector.

An example of an input vector is: Address Data pattern
867 01101010

It should be emphasized that the data pattern is not a binary number. Rather,

the Is and 0s could be thought of as the presence or absence of specific features.

In the actual implementation, described later, both the address and contents are

256-bit patterns.

2. The memory in this example implements only 99 hard locations. These have
associated with them the addresses:

5.5, 15.5, 25.5, ..., 995.5

6 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

+
contents of first Input vector

I 0 0 ! 0 0 I 1

contents of second input vector

i I O 0 O O O ! ! i

Figure 1.2: Example of a location.

1.4. BASIC CONCEPTS 7

The reason for the half addresses is merely to position each location symmetrically

between 1 and 10. The need for this will be clear shortly.

. Each hard location has associated with it 8 buckets---one bucket for each bit of

an 8-bit data-pattern vector. Each bucket accumulates bits that are stored into it

by acting as an up/down counter. Each bucket starts out holding the value 0. A

binary 1 stored into the bucket cansesits count to go up by 1, whereas a binary

0 stored into a bucket causes its count to go down by 1.

As will be explained shortly, this facility is required because each location may
have many inputs stored into it.

An example of a location is shown in Figure 1.1. If an input vector with contents

1 0 0 1 0 0 1 1 is stored into this location, the location will look as shown in the upper
half of Figure 1.2. If now another input vector with contents 1 0 0 0 0 0 1 1 is stored

into the same location, the result is shown in the lower half of that figure.

The contents of an individual location could be interpreted as follows. If a bucket
has a count that is positive, it has had more ls written into it than 0s and can be

interpreted as a 1. Similarly, a bucket with a negative count can be interpreted as a 0.

A bucket with a 0 count (in a location that has been written into) has had an equal

number of ls and 0s written into it and can be interpreted as a 1 or a 0, each with
probability 0.5.

To understand the working of SDM, we will deal with the problem of retrieving

the closest match. We want to store into memory the input vectors that the system

encounters. At some later point, we want to present to the memory an address cue and

have the memory retrieve the contents of the stored input vector with the address that

is closest to the input cue.

1.4.2 A simple solution that does not work

An apparently simple way in which this best-match problem could be tackled is the
following:

Store each input into the closest hard location. This can be accomplished

by making each hard location "sensitive" or addressable by any input with

an address that is within 4.5 of the address of the location. Thus, any input

with an address in the range 31 to 40 (both inclusive) would be stored into

the location with the address of 35.5, and when presented with a retrieval
cue would read out the contents of the closest hard location.

Unfortunately, though this sometimes works, it often does not. To understand this,

consider the following example:

8 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

Location Location Range
address contents that

A

of input addresses
activate location

M ln M a x

81 130

91 140

I01 150

III i6O

121 170

131 180

141 190

151 200

151 210

171 220

Figure 1.3: Example using SDM.

Input#l: 139 10101010

Input #2: 169 1 1 0 0 1 0 1 1
Retrieval cue: 150

Input #1 will he stored into the location with address 135.5. Input #2 will be stored
into the location with address 165.5. The retrieval cue will activate the location 155.5.

This location has nothing in it. One way to deal with this problem is to gradually

increase the activation distance during retrieval. In the above case, if the activation

distance were increased to _: 14.5, the system would retrieve the contents of the location

135.5, which contains the closest match. However, if the example is modified slightly

so that the first input address is 131 and the second is 161, the method fails even after

the activation range has been increased to 150 :[: 14.5. SDM solves the problem using a

statistical approach that is much more robust and has fairly simple mechanics.

1.4.3 The SDM solution

SDM overcomes the above problem by:

1. Distributing each stored input over many locations, and

2. Retrieving from a distributed set of locations.

1.4. BASIC CONCEPTS 9

This is the reason for the word "distributed" in the name of the system. Now, instead

of storing an input into the closest location, an input is stored into all locations within a

certain distance of the write address. Similarly, when presented with a retrieval cue, all
locations within a certain distance of the retrieval cue are read out and used to derive

the output in a manner to be described. These two distances, namely the activation

distances during the storage and retrieval of patterns, need not be the same. The

operation of SDM can be illustrated by continuing with the previous example. Instead

of having each physical location be addressable by any address within 4.5 of it, assume
that the activation distance is now 4-25. We will use the same activation distance

during both the storage and retrieval phases, for simplicity. Figure 1.3 illustrates the

initial state of a portion of the system, encompassing physical locations with addresses

ranging from 105.5 to 195.5. Also shown is the range of addresses to which each location
is sensitive.

When the memory is presented with the first input pattern, 139:1 0 1 0 1 0 1 0, the

memory locations with addresses 115.5, 125.5, 135.5, 145.5, and 155.5 are all activated.

The contents of the input vector are written into each of the locations according to the

rule described earlier. Figure 1.4 shows the state of the system after this occurs.

Now the system is presented with Input #2, namely 169:1 1 0 0 1 0 1 1. This input

activates the locations with addresses 145.5, 155.5, 165.5, 175,5, and 185.5. The vector

being stored, 1 1 0 0 1 0 1 1, is accumulated bit by bit into the buckets of each of these

locations. The resulting state of the system is presented in Figure 1.5. Notice that the

two locations at addresses 145.5 and 155.5 have each had both input vectors written

into them. Both input vectors fell within the 4-25 activation distance of each of these
locations.

Now consider what happens when the system is presented with the retrieval cue 150.

This address activates all locations with addresses in the range 150 4- 25, namely, the

locations with addresses 125.5, 135.5, 145.5, 155.5, and 165.5. The retrieval mechanlsm's

goal is to determine, for each bit position, whether more ls or more 0s were written into
all the selected locations and to output 1 or 0 accordingly. In the case of a tie, 1 or 0 is

output with probability 0.5.

The way this works is illustrated in Figure 1.6. For each bit position, the following

operations are performed: •

1. The contents of the buckets of all the selected locations are summed arithmetically.

(A positive sum indicates that more ls were written into these locations, while a

negative sum indicates more 0s.)

2. The sum isthresholded.

A positive sum yields 1, a negative sum yields 0, and a sum of 0 yields 1 or 0 based

on the toss of a coin. In this particular case, this process yields the output 1 0 1 0

1 0 1 0. This is the system's response to the query "What is the content portion of

10 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

Location
eddresw

f

Location
contents

lit

Location
address

f

Figure 1.4: Example using SDM.

Location
contents

A

Input #I, with
oddro|s l $9,

Is written
Into each of
these
locations

(105.5_

(,.,.,)

Input #2, with
address 169,

Is written
Into each of
these
locations

Figure 1.5: Example using SDM.

1.4. BASIC CONCEPTS 11

the stored input with the address closest to the retrieval cue of 1507". Notice that the

vector output by the system is in fact the content portion of Input #1, which was the

stored input vector with the closest address to 150, the retrieval cue.

1.4.4 Differences between the simple example and the real model

The simplified model presented above is sufficient to explain some of the basic mech-

anisms of SDM. However, to understand the workings of the model in more depth we

switch now to a discussion based on the real model. In the simple model above, input

vectors consisted of an address portion that was a three digit integer, while the contents

were an 8-bit vector. Distances between input vectors were measured by the magnitude

of the arithmetic difference between a_dd_sses. In the actual model, input vectors have

an address consisting of an N-bit vector and a contents portion consisting of an M-bit
vector. N and M need not be the same in the most general case, but they are both

256 in the prototype (see note on page 14). This equality is required for certain modes

of operation, described later in this report. Distances between vectors are measured by

the Hamming distance between the N-bit vectors. Since the Hamming distance is the
number of bit positions in which the two vectors differ, for N-bit vectors this distance

will range from 0, for two identical addresses, to N, for two addresses that are bitwise

complements. The potential address space is 22se, compared to 1,000 in the simple

example. Whereas the simple model had 100 hard locations, the basic module of the

prototype system has 8,192 locations with addresses scattered randomly with uniform

probability through the address space. Each hard location has associated with it a set
of 256 buckets to accumulate the vectors that may be stored into that location. Each

bucket is conceptually an 8-bit up/down counter that can hold a count in the range of

-127 to +127, inclusive. (If more than 127 ls are stored into a bucket in excess of 0s,

the bucket will saturate at 127. Similarly, it will saturate at -127 if the number of 0s

stored into a bucket exceeds the ntunber of ls by more than 127.) For the discussion

that follows, it is useful to visualize the 2N input space as a two-dimensional rectangle.

Figure 1.7 shows the address space in this fashion. The physical locations are indicated

by the small black dots within the rectangle.

The process of writing or storing a vector into the memory consists of the following

two steps:

1. Draw an N-dimensional sphere of Hamming radius d around the address of the

input vector. In the plane this can be visualized as drawing a circle centered at

the address of the input vector.

2. For each physical location that falls within this sphere, accumulate the contents

portion of the input vector into each of the 256 associated buckets. This is depicted

in Figure 1.8.

12 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

CIOS.5)

_k

The retrieval

J cue, with
i address ISO,

• activates

I each of
these

I locations.
J

I
1"hugo ore

than
procol|vd

Contents of

selected
locations

Sum each

bit position

| q

I d

Threshold

the sum

RETRIEVED
VECTOR

Figure 1.6: Example of data selection in SDM.

1.4. BASIC CONCEPTS 13

• , . • , 1
• • • I_-- Box represents

• • a • • _ i the entire
• . • . " • i address space

_ • • • _ el
• • • • • • w • I

. • • • • • • • "i
• . • • " . • • I

I • • . " • " I / EaChdotisan • • a • • _ physical iocltlon
• • • •I" - ." " --I

• • • • • • • • •

Figure 1.7: Space of locations.

* , * * " -- e.-_-l--- Address of the

• • • • _ " I input vector

• • " • • ,/. _? .I
" • " " • • _,.Z. •/. _1

O •

• • • • radius d_ "1 AccumuUatathe
• • • _ _ • | contents of the

e • - • o_--'-t---input vector into
O _ • • - ". . • • • I all locations that

" • • I fall inside this
, • " • , * • " .I circle
i

• " " " " " " . -I

Figure 1.8: SDM storage activation radius.

I
• • • /0 I Retrieval address

• . , , 0_,_'0 . i Perform. bit-w.is,

. .- • • - (.;,¢_" .- "I :"r'm'o'%3n;_
. _1 -_'t" l- l operauon on me

• • - "_ ./" • / • • I contents of all
radius d'-_-_ • - / • i locations that

• . _ • • • i fall in this
" • " - " I circle to derive

o • • • • • • • • • I the output vector

• • • " • . • • I
I

Figure 1.9: SDM retrieval activation radius.

14 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

Given a retrieval address, the process of reading from the memory proceeds in a

similar two-step fashion:

1. Draw an N-dimensional sphere of Hamming radius d' (which need not equal the

radius d used for storing patterns) centered at the retrieval cue.

2. Derive the i th bit of the output vector (i going from 1 to M) in a manner identical

to that used in the simple example.

Specifically,sum the contentsof the i th bucketsof allthe locationsfallingwithin the

sphere drawn above,and then thresholdthe sum to eitherI or 0 based on whether the

sum ispositiveor negative.This isdepictedin Figure 1.9.

Note: The software could in theory be modified so instead of having m = 256 8-bit

counters associated with each hard location, one could have m = 12_8 16-bit counters,

or m = 64 32-bit counters. The positive and negative ceilings for the counters would

then also be changed in software to 4-32767 and 4-2147483647, respectively. Since

the microprocessor on the stack module uses a 32-bit word-length, it is impractical to

implement counters larger than this.

1.5 Autoassociative dynamics

We are now in a position to understand the reconstructive properties of SDM when

used in the autoassociative mode. In this mode, the dimensionality of the address and

contents portions of an input vector are the same. In fact, the contents are also used as

the address. This means that the input vector can be viewed as consisting of a pattern

vector P that forms its address vector, and the same pattern vector P that forms it

contents vector. During storage, the pattern vector P serves as the address that is used

to select a number of physical locations. The same vector P is also stored into each of

the locations it activates. Figure 1.10 shows three pattern vectors P(1), P(2), and P(3)

stored into locations in memory. Z is a contaminated or partial version of P(1), and

the goal is to have the memory reconstruct P(1) when cued with Z. As shown in the

diagram, the locations activated by Z are of six types:

I. Those that containonly P(1).

2. Those that containP(1) and P(2).

3. Those that containP(1) and P(3).

4. Those that containonly P(2).

5. Those that containonly P(3).

1.5. A UTOASSOCIATIVE DYNAMICS 15

Stare P$ Into ell

Store PI Into all / _ locations falling

locotlon,rnlllng .. \In,ldej l, clrcle
Inside this / _ _0 _i /

circle _

/ __.._.. _ Read out from all

/ / ,goat,on,,,,,,ng

/ _ Store P2 lain oil locations
falling Inside this circle

For clarity, individual physical locations are not shown.

Figure 1.10: Overlapping radii.

6. Those that contain nothing.

This can be generalized to say that the locations activated by Z contain a mixture

of P(1), which can be regarded as the signal, and non-P(1) patterns, which can be

regarded as noise, using nomenclature from Keeler [5].

The signal-to-noise ratio is higher (a) the closer Z is to P(1), and (b) the less densely

populated the memory is, i.e., the fewer the patterns that have been written into it.

It can be shown mathematically [4] that if Z is closer than a certain critical distance

to P(1), then summing and thresholding the contents of the locations activated by Z

results in a vector Z(1) that is closer to P(1) than Z was. The critical distance is a

function of how densely populated the memory is. The greater the population of the

memory, the smaller the critical distance. The fact that Z(1) is closer to P(1) than Z

was is of great benefit because now Z(1) can be used as a new retrieval cue. The output

z(2) win be even closer to P(1) than Z(1) was, and it too can now be used as a new

retrieval cue. This iterative process, which is a form of feedback, therefore produces a

sequence of outputs Z(1), Z(2), ..., Z(n) that converges rapidly to either P(1) or a

minimally noisy version of P(1). This is depicted in Figure 1.11a. If the cue vector Z

is beyond the critical distance from P(1), i.e., if it is too contaminated or incomplete,

the sequence of vectors Z(1), Z(2), ... will not converge to P(1). Instead, it will be a

diverging sequence that will wander through address space. It may eventually wander,

by chance, into the attracting zone of some other stored pattern, say, P(k), and thereby

16 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

converge onto P(k). This process is depicted in Figure 1.1lb.

Experimentally, convergence to the correct value P(1) occurs rapidly (,,,10 itera-

tions), whereas the diverging sequence, if it eventually converges to some other pattern,

takes a large number of iterations. The two situations are easy to distinguish in practice.

There is an upper bound to the value of the critical distance referred to above. In a

sparsely populated memory in which there is little or no overlap between the locations

in which patterns have been stored, the critical distance is necessarily less than the sum

of the Hamming radii used during storage and retrieval. If the cue Z is beyond this

distance from P(1), none of the locations activated by it during the retrieval process

will contain any copies of P(1) (see Kanerva [4] for details).

The behavior of SDM illustrated in Figure 1.11 is similar to the dynamic behavior of

the Hopfield net used in its autoassociative mode. (See Keeler [5]). In that model, stored

patterns act like attractors for input cues within a certain critical distance. The behavior

of the Hopfield model, however, is driven by an energy-minimization mechanism in which

the stored patterns behave like local minima of an energy function associated with the

address space.

1.6 Heteroassociative dynamics (sequences)

SDM can also be used in a heteroassodative mode. In this mode the contents portion

of an input vector is not generally equal to its address portion. In general, the two do

not have to be of the same dimension either. However, when they do have the same

dimensionality, SDM lends itself to the storing and recalling of sequences. Consider a

sequence of N-dimensional pattern vectors:

P(1),P(2),P(3),...

Examples of such sequences might be (a) a sequence of motor-control parameters for

controlling the trajectory of a robot arm, or (b) a sequence of musical notes that com-

prises a tune.

Imagine forming the input vectors shown below, where the address portion of an

input vector is the previous data pattern element in the sequence.

Address pattern Data pattern

P(1) P(2)

P(2) P(3)

P(3) P(4)

P(i) P(i + 1)

These vectors can be used to write into the memory. The effect of this is that at the

locations selected by the address P(1), the pattern P(2) is stored; at the locations

1.6. HETEROASSOCIATIVE DYNAMICS (SEQUENCES) 17

P1

ZI

Z

(a)

Cueing the memory with
Z sufiqcienfly close to P1
results in a rapidly
converging seqence of
values. The stored pattern
P1 acts like an attractor.

P1

7_,2

z _ O4_ --_ziO/"
Pk

(b)

If Z is too distant from P1,
the iteratively retrieved
sequence does not converge.
It may eventually converge
on some other pattern Pk.

Figure 1.11:SDM autoassociativemode.

18 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

P(1),_ _ ,, store P(2) into all locations

(/__1. "_ inside this circle

\ / . store P(3) into all locations

__,,,_ inside this circle]

A sequence can be stored by using an element, P(i), as the
address and the element that follows it, P(i+l), as the contents.

Figure 1.12: SDM heteroassodative mode: storage.

locations

selected by the address P(2), the pattern P(3) is stored, and so on. In general, at the

locations selected by the address P(i), the pattern P(i + 1) is stored. This is illustrated

in Figure 1.12.

Now imagine cueing the memory with a pattern close to one of the elements of the

stored sequence. For example, suppose we cued the system with the address P(2), that

is close to P(2). Just as in the autoassociative case, if P(2)* is suffidently close to P(2),

the retrieved pattern will be even closer to the pattern that was stored in the locations

activated by the address P(2). In this case the retrieved value P(3), will be closer to

the stored value P(3) than P(2), was to P(2). If P(3), is now used to cue the memory,

the retrieved pattern P(4), will be closer to P(4) than P(3), was to P(3). Continuing

in this manner, we observe that cueing the memory with the pattern P(2), allowed us

to iteratively recover the sequence: P(3),, P(4),, P(5),, ... that converges onto the

stored sequence P(3), P(4), P(5), This is illustrated in Figure 1.13.

Just as in the autoassociative case, if the initial cue P(2), is too distant from P(2),

the retrieved sequence would not converge to the stored sequence. However, unlike

the autoassociative case where convergence can be easily distinguished from divergence,

in the case of sequences the difference is unfortunately hard to tell by looking at the

retrieved patterns.

1.6. HETEROASSOCIATIVE DYNAMICS (SEQUENCES) 19

P(3) P(4)

p (2)_.,.,.,,,,,.,,-.,-'_ (_"_ 0 %

P(2)" P(5)_
 eP(6',

\
P(7) •

Using a cue close to any member of a stored sequence iteratively
recovers a sequence that converges to the stored sequence.

Figure 1.13: SDM heteroassociative mode: retrieval.

1.6.1 Folds

The ability to store sequences endows SDM with the capability to behave as a predictor.

The values recovered from stored sequences provide a prediction of the most probable

future event. This is illustrated in the following example. Suppose the sequence A --+

B --* C --+ D occurs more often than the sequence A --+ B --* E --+ D. Suppose,

further, that each sequence that the system encounters is written into it in the manner

previously described. If the system now encounters B, (dose to B), what is likely to

happen next? Cueing the system with B, will recover C* (dose to C) rather than

E* (close to E), because in the locations activated by B there were more copies of C
stored than of E, simply because it occurred more often. Thus, the retrieval mechanism

predicts the most likely next step in the sequence.

The examples used so far have assodated the next element in a sequence with the
one before it. This is often insufficient as a basis for prediction. For example, consider

the two equiprobable sequences:

A_B_C_D

E_B_C_F

Given an event C*, we have insu_cient information to predict the next event. In

fact, to do so we need to look not only one but two steps back in the sequence to

know which sequence we are in. SDM handles such situations by utilizing "folds" of

different "orders" and combining the results from different folds to arrive at the result.

In general, a kth-order fold is a complete set of SDM locations in which sequences are

stored with pattern P(i) serving as the address and pattern P(i + k) serving as the

20 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

contents.More specifically,a first-orderfoldisone in which the pattern storedisthe

one that immediately followsthe pattern that forms the address. A second-orderfold

isone in which the storedpatternisthe one that followsthe address pattern by two

steps,and in a third-orderfoldthe storedpatternfollowsthe addresspattern by three

steps.The two sequenceslistedabove would resultin the followingstoragein each of

threefolds:

Sequence A--,B--*C_D E--.B_C_F

Ist-orderfold at A storeB at E storeB

at B storeC at B storeC

at C storeD at C storeF

2nd-orderfold at A storeC at E storeC

at B store D at B store F

3rd-order fold at A store D at E store F

Figure 1.14 shows how to use multiplefoldsto arriveat a prediction.Imagine

that the system has previouslyencountered the sequences A --.B --,C _ D and

E _ B _ C _ F in an equiprobableway and thatithas storedpatternsintoitsthree

foldsin the manner shown above. Now, assume thatthe system encountersthe patterns

E, B, and C in that order.The input being encountered isfed intoa mechanism like

a shiftregisterin which each registerholds a pattern. The shift-registercontentsare

used asinput cuesto successivelyhigherorder folds.In thiscase,the most recentinput

pattern C isused as an input cue to the first-orderfold,B is used as a cue to the

second-orderfold,and E isused as a cue to the third-orderfold. To derivea result,

the standard summing and thresholdingoperationisperformed on the contentsof all

the locationsactivated,not foldby fold.The locationsactivatedby the cue C in the

first-orderfoldhave had an equal number of D and F patternswrittenintothem, as

have the locationsactivatedby the cue B inthe second-orderfold.The cue E activates

locationsin the third-orderfoldthathave only had F patternswrittenintothem. The

resultof summing allof these together and then thresholdingisthat the pattern F

isrecoveredwith high probability.This patternisthe system'spredictionof the next

event that islikelyto occur.

A major differencebetween the model and the prototypeliesinthe representationof

the data word. In the model, the input vector(referredto as a "word" from hereon) is

an m-bit binaryvectorof lsand 0s,whilein the prototypeitisan m-byte vectorwhere

each byteencodes the valueofone vectorcomponent. Moreover, binary lsare coded as

+ 1,and binary 0s are coded as -1. This representationprovidesgreaterflexibilityin

applicationsettings.

Some of the parameters of the prototypedesignwere describedin section1.4.4on

page 11. input vectorsare 256-word-longvectors.The system implements 8,192 hard

addresses(locations).Words writtenintothe system are accumulated, bit wise,into

1.6. HETEROASSOCIATIVE DYNAMICS (SEQUENCES) 21

Encountered events

©

©

©

_m

Ist order fold

2rid order fold

3rd order fold

Contents
of activated
locations

D, F

D, F

Predictionof next
element in sequence

F

@
Sum and Threshold

Figure 1.14: Folds.

Table 1.2: Parameters of SDM prototype.

Dimensionality of a word: 256
Counter size: 16 bits

No. of Hard Locations: 8192

Number of folds: 1 to 16

Hamming Radius: 0 to 255

Number of reads or writes per second: 50

22 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

Table 1.3: Hardware and software components for prototype system.

Module

Executive module

Control module

Address module

Stack module

Underlying Hardware

Sun 3/60 workstation, or

any microcomputer with SCSI

port

MC68030 based single-board

computer

Custom designusingLSI com-

ponents on wire-wrap board

MC68030 based single-board

computer (1 per fold)

Underlying Software

Custom C-code

Assembly language code

None

Assembly language code

buckets that hold an 16-bitbinarycount. These and some performance characteristics

ofthe system are summarized in Table 1.2.

The prototype system was designed around four modules. This modular approach

providesthe flexibilityto modify memory parameters forthe presentprojectand makes

iteasy to upgrade specificportionsofthe system in futuredesigns.Figure 1.15shows

a physicaland block diagram of the system, while Table 1.3shows the hardware and

softwareused to implement each module.

Each of these modules isdescribedbrieflybelow, and the descriptionisexpanded

upon laterin thischapter.

1.7 Physical description

The Executive module is a software module on the Sun 3/60 workstation that provides

the interface between a user or application and the rest of the system. The system's

"focus," described in section 1.1, resides here. The EM communicates with the rest of

the system via a Small Computer Systems Interface (SCSI) port on the Sun. Executive
module software is written in C.

The remaining modules in the system reside in a custom card cage, linked to each

other by a VME bus.

The Control module controls the operation of the Address and Stack modules and

acts as a link between them and the Executive module. It is connected to the EM on

the Sun via the SCSI bus. The CM is implemented on a single-board microcomputer
based on a Motorola MC68030 microprocessor. The board has 4 MB of random-access

memory. The operating program is written in assembly language.

1.7. PHYSICAL DESCRIPTION 23

Sun workstation

11 Custom card cage

SCSI

connector /

i /I//

 x cu,,v stc°n r°'Module Module

CSI bu
Address IModule (1

Stack
Module

per fold)

Z_ VME bu_s '_

Figure 1.15: Physical and block diagrams of SDM prototype.

24 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

13 bit Hard Address
tag

ab,.=

256 bits
I I

I I

13 bit Contents
tag

512 consecutive bytes
I I

I I

8191 = = 8191 = J

Address Module One fold In Stack Module

Figure 1.16:Relation between the Address and Stack modules.

The Address module performs the task of determining which hard addressesare

within the specifiedHamming distanceofthe referenceaddress.Because ofthe compu-

tationalintensityofthistask,the Address module iscustom designedand implemented

on a wire-wrap board. The Address module isthe only custom designed pieceof hard-

ware in the entiresystem.

The Stack module holds the contentsof the folds.Each foldisimplemented on a

Force Computers MC68030-based single-boardcomputer with 4MB of random-access

memory. Each counterisimplemented as 2 bytes (16 bits)in the memory space of the

microprocessor,with the task of writingintothe counteror reading from the counter

being performed by the processor.Sincethe contentsof a locationconsistof 256 coun-

ters,we use 512 sequentialbytes to implement the 256 counters associatedwith each
location.

1.8 Functional description

1.8.1 How the Address and Stack modules implement SDM

locations: the concept of "Tags"

In a sparsedistributedmemory, eachhard addresshas associatedwith ita setofcounters

in which to store words that are written intothat location.In our implementation,

the hard addressesare storedon one board (the Address module) while the counters

associatedwith them arestoredon a separateboard (theStack module). The one-to-one

association is maintained via a 13-bit "tag" that associates a particular hard address
on the Address module with a particular set of 256 counters on the Stack module. The

conceptual arrangement is shown in Figure 1.16.

1.9. OPERATIONAL DESCRIPTION 25

256 bits .,._

8,_._Dns A particular 256 bit Hard Address

13 bit address bus

Figure 1.17: Physical arrangement of hard addresses in Address module.

Thus, when the Address module determines that a particular hard address is within

the cut-off Hamming distance of the reference address, it simply passes the 13-bit tag
associated with that hard address to the Control module. The Control module in turn

passes the tag to the Stack module, which uses the tag to uniquely identify a set of

512 bytes that hold the contents of the location associated with the hard address in

question. Physically, the Address module stores the hard addresses in a set of 32 static

RAMs, each of which is 8K × 8 bits. Since these RAMs are operated in parallel, they

behave like a set of locations that is 256 bits wide and 8192 deep, which is what we

need to implement 8192 hard addresses. The arrangement is shown in Figure 1.17.

As described earlier, the Stack module implements the 256 counters associated with

a location with 512 consecutive bytes in the address space of the MC68030 processor.

Thus, the counter values associated with the hard address with tag 0 would be stored in

bytes O to 511. For an arbitrary tag N, (0 _<N _<8191), the associated bytes would be

at addresses (N • 512) to (N, 512 -F511). (The exact mapping is conceptually identical,

though the locations in memory space are a little different).

1.9 Operational description

In order to explain how the prototype works, the description is divided into a set-up

and operating phase. Each of these is explained in the following sections.

26 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

1.9.1 Set-up

The set-up phase consists of loading a set of up to 8192 hard addresses into the Address

module. The user determines what hard addresses to use for a particular application.

The Executive module passes each hard address and an associated tag to the Control

module, which in turn passes them to the Address module, which writes the hard address

into the physical location identified by the tag. (If one were starting a fresh application,

there would be no reason to not load hard addresses into sequential locations in the

Address module, and passing the tag from the Executive module would be redundant.

However, this ability to load a hard address at a particular tag location is useful for

testing performance characteristics and for debugging. For example, it allows one to

change a particular hard address by simply storing a new one into the same tag location.)

1.9.2 Operation

During its operating mode, the SDM system either reads or writes. How each module

works to achieve this is explained below, first for a write and then for a read.

SDM Write

. The Executive module passes the 256-bit reference address and the 256-byte

"data" word to the Control module, as well as the cut-off Hamming distance
to use.

2. The Control module passes the reference address and cut-off Hamming distance

to the Address module, and the data word to the Stack module.

o The Address module sequentiallycalculatesthe Hamming distancebetween each

hard address and the referenceaddressand compares itto the cut-offHamming

distance.Whenever itfindsa distancelessthan or equal tothe cut-off,itpassesto

the Control module both the tag ofthat hard addressand the Hamming distance
itcalculated.

. Whenever the Control module receivesa tag from the Address module, itpasses

the tag to the Stack module and both the tag and Hamming distanceto the Exec-

utivemodule. (The latteristo study performance characteristicsof applications).

6. Whenever the Stack module receives a tag from the Control module, it performs

256 integer adds. Each add consists of adding sequential bytes from the data word

(usually either +1 or -1) into sequential bytes in memory. A code segment to

explain what happens is shown in Figure 1.18.

1.9. OPERATIONAL DESCRIPTION 27

II111ol

dataword [0] dataword [255]

Ill

/

For each tag received from Control Module do :

begin

StartingByteAddress := Tag * 256 ;
for J := 0 to 255 do

begin
M := StartingByteAddress + J ;

byte [M] := byte [M] + (2 * dataword [J] -
end ;

1);

end ;

The jth component of the data word is accumulated into the jth byte of each selected
location; e.g. a '1' in the dataword causes the count to go up by 1, while a -1 causes
the count to go down by 1. (The counters have a ceiling of +127 and a floor of -127).

Figure 1.18: What the Stack module does during a write operation.
Result : Array [0..255] of Integer (* an array of integers *)

For each tag received from Control Module do :

begin

StartingByteAddress := Tag * 256 ;
for J := 0 to 255 do

begin
M := StartingByteAddress + J
Result [J] := Result [J] + byte

end ;
[M] ;

end ;

The M th counter of each selected location is accumulated into the M th element of the array
"Result" for J from 0 to 255.

Figure 1.19: How the Stack module accumulates the contents of locations selected by

the Address module during a read operation.

28 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

SDM Read

i. The Executivemodule passesa referenceaddressand a cut-offHamming distance
to the Control module.

.

3.

.

The Control module passesboth of theseto the Address module.

The Address module performs exactly the same operations that it does during

a write. Namely, it passes back to the Control module the tag and Hamming
distance for every hard address Hamming distance from the reference address is

less than the cut-off Hamming distance.

The Control module performs the same operations as during a write. Received

tags and Hamming distances are passed to the Executive module, while the tags
alone are also passed to the Stack module.

.

.

.

8.

The Stack module establishesa 256 element integerarray to hold the resultsof

itsoperations.Every time itreceivesa tag from the Controlmodule, itperforms

256 integeradds; each add consistsof adding a byte-sizedcounter value intoan

array element. The operationisshown in Figure 1.19.

When the Address module has gone through all 8192 hard addresses and the

Stack module has performed its accumulation task for every selected tag, the

Stack module sends to the Control module the results of its accumulations (i.e.,

Result[0] to Result[255] from Figure 1.19).

The Control module passesthisresulton to the Executivemodule.

The Executive module thresholdseach resultto either-I or I,based on a user-

suppliedthresholdvalue.Itthen constructsa 256-component data word from the

thresholdedresults.This data word isresultofthe read operation.

1.10 Summary

The prototype has been designed to provide a significant improvement in performance

over software simulations of sparse distributed memory systems, while maintaining a

high degree of flexibility. Those goals have been achieved by dividing the system into four

modules, and by using standard subsystems (e.g., single-board computers) and software
based implementations wherever feasible. One module contains a custom hardware

based design. This was necessary in order to achieve the desired speed in the critical

task of calculating and comparing Hamming distances.

The next chapter describes the hardware, and in particular the custom-designed
Address module, in more detail.

Chapter 2

Hardware Description

This chapter describes the details of these hardware portions of the SDM system:

1. The Executive Module

2. The Control Module

3. The Stack Module

4. The Address Module

The Address module is described in the most detail since it uses custom hardware

required to meet the performance specifications.

2.1 The Executive module

The primary requirementsforthe Executivemodule are:

• Provide a user interface to the SDM;

• Implement a high-speed communications protocol to the other portions of the

SDM;

• Provide a common programmer interface;

• Handle the computation requirements for program modules that do not use the
SDM.

The equipment that best fits the above requirements is the workstation. In particu-

lar, workstations provide an excellent user interface, have a programming interface with

which most researchers are comfortable, and can handle the computation requirements.

29

30 CHAPTER 2. HARDWARE DESCRIPTION

Coincidentally,SDM simulatorshave been writtenforworkstations;researcherswho axe

familiarwith thesecan easilyadapt themselvesto thisimplementation.

One component of criticalimportance isthe communications interfacebetween the

Executivemodule and the SDM. The communications system must support thefollowing

operations:

I. Operation. The operationalrequirementisfor50 read/writeoperationsper sec-

ond. This targetisbased on about 25 hitsper operation. Performance isvery

much a functionofhitrate(seeFlachs[2]).Each operationconsistsofthe transfer

of the 256-bitreferenceaddress,an operationidentifier,and 256 32-bitsums per
foldback to the Executivemodule.

2. Debugging. The entirecontentsof the SDM, includingthe Stack,Address, and

Control module memories, shouldbe transferablein a reasonableamount oftime.

3. Setup. The contentsof the Hard Address Memory, to be locatedon the Address

module, shouldbe quicklydownloadable.

Of these,requirements 2 and 3 are for convenience;clearly,we want debug and

set-uptime to be a minimum. However, requirement 1 placesa real bound on the

communications subsystem.

Assuming the worst case for a singlefoldsystem, we must transfer50 reference

addresses,50 instructions,and 50 •256 32-bitsums per second. This translatesinto:

C = 50 • (256+ 8 + 256 • 32) = 422,800 bits/second

Again assuming the worst case,we allowfora protocoloverhead of 50%:

N = 2C = 634,200 bits/second

fora singlefoldsystem. Additionalfoldsadd 409,600 bits/second/foldJ

One communications system that would easilymeet thisrequirementisa bus-to-bus

mapping switch.Clearly,the transferrateof such a devicegreatlyexceedsour require-

ment. However, the use of a bus map introducesan enormous amount ofinflexibility

into the SDM; in particular,preferentialaddresseswillprobably be already taken by

the workstation. The use of a bus map would alsorequirethat the bus used by the

Executive module be the same as that used by SDM. This limitsflexibilityof choiceof

the Executive module, and may placeseverestructuralconstraintson the SDM.

A solutiontothisproblem isto use an existingcommunications protocolthatissim-

pleand providesthe requiredbitrate.In particular,ithelpstoview the SDM as a smart

disk drive that is attached to the Executive module. Most vendor-independent disk

protocols provide re_ _d_wrR_operations and support some level-o_ control-message

12•(so•(_s6•16))= 409,600

2.2. THE CONTROL MODULE 31

handling. Moreover, most workstations support some form of vendor-independent disk

protocol.

For our implementation, we chose the Small Computer Systems Interface protocol, or

SCSI, to provide communications between the Executive module and the other modules

of the SDM. SCSI supports a burst rate of 1.5Mbps and provides a reasonable number

of control functions. Because of the large number of workstations that support SCSI,

this implementation of the SDM system may be attached to almost any workstation,

mainframe, or even a personal computer.

Thus, the requirements for the Executive module indicate a powerful workstation

that supports the SCSI protocol. Because of our familiarity with the products of Sun

Microsystems, the current implementation uses a Sun 3/60 color workstation, with the

SDM attached to one of the SCSI ports. We emphasize, however, that any system that

supports the SCSI protocol is capable of using the SDM as an attached processor.

2.2 The Control module

The Control module, or CM, acts as the interface between the Executive module and

the rest of the SDM. It manages the operation of the Address module and transfers tags

from the AM to the appropriate fold in the Stack module.

The choice of a processor for the CM was heavily influenced by two considerations:

1. The need for a large (greater than 24 MB) address space;

2. The availability of software tools.

The largeaddressspace mandates the use of the VME-bus standard interconnect,

which in turn favorsthe Motorola 68000 familyof processors.In addition,software

toolswere readilyavailablefor thisprocessorfamily.The memory-to-memory trans-

ferbandwidth mandates the use of a 32-bitprocessor;the MC68030 fillsallof these

requirements.

Thus, the requirementsforthe CM are as follows:

I. Motorola 68030,25 MHz or greaterclockspeed.

2. A large quantity (about 4MB) of dynamic RAM; to hold referencetablesand

Hard-Address-to-Tag translationmaps.

3. Dual-ported memory to support asynchronous transfers.

A vendor search indicated that Force Computers would be able to deliver a board

with these specifications, in addition to one that matched the requirements for the folds,
which will be discussed later.

32 CHAPTER 2. HARDWARE DESCRIPTION

The actual functionality of the CM is implemented in software; however, there are

a few features of the CM hardware that particularly facilitate the SDM:

1. Address module simulation. Because of the large quantity of memory available, a

significant number of simulated AM operations can be performed on the CM.

. Message Broadcast. The interruptdrivenmessage broadcast system allowsthe

Command module to issuecommands to allstack modules simultaneouslyand

await theirresponse without polling.

2.3 The Stack module

The Stack module consists of a number of submodules, known as folds. Each fold is

independent; thus, the design of the SM is simplified by considering it as made up of a

number of similar submodules. The requirements for each fold are:

. Enough memory to hold a i6-bit count (two bytes) for each bit in every word of

the Hard Address Memory. Practically, this implies a need for 512,8, 192 = 4MB

of memory as a minimum.

2. The memory must be dual ported fordebugging purposes.

3. A processing system that will be able to perform integer additions quickly enough

to satisfy the 50 operations/second requirement.

These requirements fall within the capabilities of a single-board computer, as long

as the processor on the board is fast enough to perform the necessary integer adds.

To this end, considering the implementation decisions for the Control module, we

again selected a processor card based on the Motorola MC68000 architecture. Force

Computers was able to provide a board with a 25 MHz MC68030, and 4MB of dual

ported dynamic RAM.

2.4 The Address module

The Address module, or AM, is the only custom component of the SDM. It willbe

describedin considerablymore detailthan the other components. As mentioned in the

architecturesection,more than one AM may be used withinthe SDM ifa performance

increaseisrequired.The reason fora custom implementation liesin the fundamental

operationthat the AM performs,which isa 256-bitHamming distancecalculation.

Itshould be stressedthat a 256-bitword isverylarge.In order to fullyappreciate

the difficultyof designinga processorwith 256-bitinternaldata paths,consider the

following:

2.4. THE ADDRESS MODULE 33

Table 2.1: Register addresses.

Register Longname [width] R/W #32-bit Regs Reg_

TR Tag Register [16] W 1 0

A 13-bit "tag" which locates a hard address in the Hard Address Memory.

HAR Hard Address Register [256] W 8 1-8

Enters a hard address into the Hard Address Memory.

RAR Reference Address Reg. [256] W 8 9-16

Sets the reference address--the Address in question.

MR Mask Register [256] W 8 17-24

Sets the Hamming AND mask.

LR Limit Register [8] W 1 25

Defines the radius of the Hamming Sphere. Any tag with Hamming distance less
than or equal to this will be written to the Tag Cache.

CSR Command/Status Register [8] R/W a 1 26

The bits in this register determine the current state of the machine.

TCO Tag Cache b Output [24] R 1 27

° The Command/Status Register has different interpretations when being read or written.

b A Tag Cache is a 256-word cache that holds the accepted tags.

1. If one designs the data-path elements with byte-wide, commercially available prod-

ucts, each element in the data path requires 32 chips.

2. Each link in the data path requires 256 connections; a four-element data path will

easily require in excess of 1,000 wire wraps.

These two numbers (components and connections) will quickly outstrip the capacity

of most boards and development systems; our system will fit only on a 400 mm high by

366 mm wide 9U sized VME bus card, which is the largest one available.

2.4.1 Overview and board floorplan of Address module

The Address module appears to the Control module as a set of sequential memory
locations on the VME bus. These addresses are defined in Table 2.1.

34 CHAPTER 2. HARDWARE DESCRIPTION

Reading the Command/Status Register returns the following bits:

Bits 6 5 4 3 2 I 0

FULL DONE MODE EMPTY RST STI STO

These bits are defined as follows:

STATE: Meaning:
ST1 ST0

0 0 Reset

0 1 Running
1 0 Hit

1 1 Wait/Done

Reset: (=1 for 200ms at power-on)
RST

0 Ready
1 Reset

Tag Cache Empty Indicator:
EMPTY

0 TCO not empty

1 TCO empty

Complemented Mode:
MODE

0 Uncomplemented Addresses

1 Complemented Addresses

Done Indicator:

DONE

0

1

Full Indicator:

FULL

0

1

AM not done processing

AM done processing

Tag cache is full

Tag cache is not full

Writing the Command/Status Register affects the following bits:

Bits 7 6 5 4 3 2 1 0

X X X CMODE FORCE FRST FSTI FSTO

These hits are defined as follows:

X: DON'T CARE

FORCED STATE: When the FORCE bit is set, the AM is forced into a particular

state until the FORCE bit is reset. This is used for debugging purposes only.

2.4. THE ADDRESS MODULE 35

FORCE FST1 FST0

0 X X

1 0 0

1 0 1

1 1 0

1 1 1

Forced Reset:

FRST

0

1

Complemented Mode:
CMODE

0

1

Operation:

Normal operation
Reset

Running
Hit

Wait/Done

Setting this bit forces the AM to be reset.

Ready
Reset

Use uncomplemented addresses

Use complemented addresses

Bits in the tag cache output axe defined as follows:

Bit23- Bitl6 Hamming Distance JBitl5 - Bit0 Tag ID

Figure 2.1 is the board ttoorplan for the address module. It also names the six

submodules of the AM, namely:

1. Clock and Sequencer: This submodule contains the master state machine and the
master clock.

2. Hard Address Memory. All 8,192 256-bit addresses are contained in this memory,
which consists of 32 8KB static RAMs.

.

.

Arithmetic Logic Unit: This submodule performs the 256-bit exclusive-OR and

mask operations. The Reference Address Register and Mask Register, each con-

sisting of 32 8-bit latches, are combined here with a hard address by a logic unit,

which consists of 64 programmable logic arrays (PLAs). The ALU result is a

256-bit quantity with a 1 in each bit position where the reference address differs

from the hard address and is not masked by a 0 in the corresponding bit position

in the Mask Register. The number of ls in this result is the Hamming distance

between the Reference and hard address. (The Mask is a 256-bit user-specified

pattern to restrict the Hamming distance calculation to a subset of the 256 bits,

if desired.) The CMODE bit in the Command/Status Register causes the ALU

to use the complemented hard address.

The Bit Counter. The bit counter calculates the Hamming distance by adding the

256 bits of the ALU output and then compares the result with the Limit Register.

36 CHAPTER 2. HARDWARE DESCRIPTION

I Address Module: Sparse Memory Project i

a-- I

= !
w I

- i
NOT !

_OM1TrED

i! !
! !

i !

i i
! TAGCAC_ I

" i

J2 _....................
i

F i

i i
" I !

VMESus

!Jl [

! i
i : Im |

t _
_ _ T _ • •

m m

d

Figure 2.1: Floorplan.

2.4. THE ADDRESS MODULE 37

Ifthe resultislessthan or equal to the Limit Register,thereisa "hit,"and both

the tag associatedwith the particularhard address and itsHamming distance

from the referenceaddressare writtenintothe Tag Cache.

o Tag Cache. After a matching addressisdetected,itstargetHamming distance

must be fetchedby the controlmodule. The Tag Cache actsas a firstin-first

out bufferbetween the addressmodule and the controlmodule, allowingthe two

modules to operateasynchronously.The bufferis256 tagslong,soifthe command

module can keep up, the matching processcan continue to completion with very

littleidletime. If,on the other hand, the address module outruns the control

module and the cache fillsUP, the addressmodule entersthe wait stateuntilthe

cache isemptied. Once the cache isclearedthe addressmodule re-entersthe RUN

stateand continuesoperation.

6. Bus Interface.Finally,the bus interfaceprovides addressmapping, power, and

controlinformationto the AM from the VME bus.

Figure 2.2 detailsthe statetransitionsof the Address module. The fourprocessor

statesare as follows:

0. RESET. This isthe power-up stateof the AM. However, the Address module will

enterthe RUN stateand begin processinggarbage data once the initialpower-on

resetmechanism has finished.Before writingthe Hard Address Memory or in

any other way initializingthe AM, the Control module must put the AM in the

RESET stateby settingthe FRST bitinthe Command/Status Register.The AM

willthen remain in the resetstateuntU the FRST bitisreset,causingthe AM to

enterthe RUN stateand begin processingthe referenceaddress.

I. RUN. The AM entersthisstatefrom a resetwhen the FRST bit in the Com-

mand/Status Registeriszeroed.Itcontinuesto loop withinthisstateuntila hit

(hard address "close"to Reference)occursor untilthe Hard Address Memory is
exhausted.

2. HIT. When a hitoccurs,the AM entersthe HIT stateand writesthe tag associated

with the hard addressand itsHamming distanceintothe Tag Cache. This state

isincludedfor timingreasons,enablingthe Address module to processdata at a

high frequency (1 MHz clockrate).

3. WAIT/DONE. This state is entered when the Hard Address Memory has been

fully examined or when the Tag Cache is full (has data in its last location that
has not been read by the Control module). The DONE status bit allows the

Control module to differentiate between these two conditions. The AM will leave

the WAIT state and resume the RUN state when the CM reads the last location

in the Tag Cache. The AM will remain in the DONE state until the CM sets the

38 CHAPTER 2. HARDWARE DESCRIPTION

rst rst

rst rst

Run:01 _-_*od'6"_e*hit

r'_*(d0ne+full)
Wait/

Done:l I Hit:10

Signal Description:

rst

hit

amco

full

done

The value of the state register reset line.

Is high when the Hamming distance is less than or equal to the limit.
Tag Cache will be full at the next positive clock edge.
Tag Cache is full.
The entire address space has been searched.

Figure 2.2: State transition diagram of Address module.

2.4. THE ADDRESS MODULE 39

FtLST status bit, forcing the AM into the RESET state during which it can be

set up for more reference address processing.

We will now examine each submodule of the AM in detail.

2.4.2 The Clock/Sequencer

The Clock/Sequencer implements the state machine described above. It consists of a

registered PAL to implement the state transitions and a 1.0 MHz clock. It also contains

the Reset flip-flop.

The Command/Status Register allows the state of the AM to be determined for

debugging purposes. In effect, the state machine delivers a hardwired "instruction _ to

the rest of the AM; note that the four states correspond to programming statements,

while the state-transition logic defines the transfer of control in the microprogram.

The clock/sequencer submodule also contains a 13-bit cyclical counter which is used

to address the Hard Address Memory during a Run cycle.

2.4.3 The Hard Address Memory

The Hard Address Memory stores all 8,192 256-bit hard addresses, which define the

memory distribution. It consists of 32 8K-by-8 bit static CMOS RAMs along with

the associated internal bus-switching logic that demultiplexes the input/output of the

RAMs.

Associated with each 256-bit hard address is the 13-bit tag that locates it in the

Hard Address Memory. In order for the Control module to load a hard address, it

must first load the appropriate tag into the Tag Register (implemented with two 8-bit

latches). The CM then writes the hard address into the 8 32-blt registers that comprise

the Hard Address Register. From there it is loaded into the CMOS static RAMs that

comprise the Hard Address Memory, thus storing a complete 256-bit quantity in the

Hard Address Memory.

2.4.4 The ALU

The ALU consists of a Reference Address Register, a Mask Register, and a logic unit to

perform a 256-bit XOR-AND operation. The registers consist of 32 8-bit latches each,

and the logic unit is implemented in 64 programmable array logic chips (PALs). In

addition, the ALU submodule houses the "Complement Mode" flip-flop bit. This allows

the complementary address space to be searched without reloading the Hard Address

Memory.

40 CHAPTER 2. HARDWARE DESCRIPTION

2.4.5 The Bit Counter

The resulting 256-bit word from the ALU is then passed to the Bit Counter. The

number of bits in this word that are '1' is the Hamming distance between the reference

address and the hard address in question.

The Bit Counter implements a 256-bit-wide one-bit adder in four stages. Each

stagewas constructedfrom several32KB EPROMs. The firststageconsistsof 17 such

EPROMs, with each of the 15 EPROM addresslinesconnected to one of the 256 bits

from the ALU output. The resultingfour-bitoutputs are then added in the next stage,

and so forth.At the end of the fourthstage,the bit count isrepresentedby a single

8-bitnumber. Note thatifthe Hamming distanceis256 itwillbe encoded as255 since

eightbitscan only represent0 through 255. This necessaryanomaly was determined to

have no practicaleffecton the usefulnessof the SparseDistributedMemory System.

This eight-bitresultisthen compared with the Limit Register(a single8-bitlatch).

Ifthe resultislessthan or equal to the limit,the Hit statusbitissetand the AM will

enterthe HIT state,storingthe tag and the Hamming distanceintothe Tag Cache.

2.4.6 The Tag Cache

The centralcomponents of the Tag Cache area trioofdual-ported256 byte staticRAMs.

One RAM storesthe Hamming distance,the other two storethe tag.In operation,an

internalwrite counter pointsto the next availableaddressin the DPRAM where the

tag and Hamming distancecan be stored,while an internalread counter pointsto the

next locationin the Tag Cache to be read by the CM, thus effectinga FIFO. When

the AM entersthe HIT state,the tag and distanceare writtento the DPRAM, after

which the internalwritecounterisincremented. The EMPTY statusbitisthen reset,

signallingthe Control module thatthe Tag Cache has data to be read. When the CM

reads the Tag Cache, the internalread counter isincremented. When the read and

write counters are equal,the Tag Cache isempty and the EMPTY statusbit isset.

It is important that the CM read

otherwise the operation of the AM

the CM or through powering off.

the Tag Cache only when the EMPTY bit is zero,

will be unpredictable until it is once again reset by

When the write counter wraps around again to 0, the AM entersthe WAIT state

untilthe CM has read the lastlocationofthe Tag Cache and the EMPTY statusbitis

once again set.The AM then entersthe RUN stateand continuesexecutionuntilthe

entireHard Address Memory has been examined or the Tag Cache has once againfilled

up.

2.4.7 The Bus Interface

Finally,the Bus Interfacesubmodule handlesallofthe VME-bus addressingforthe AM

and internalto externalbus translations.Itconsistsof a setof bus transceiversalong

2.4. THE ADDRESS MODULE 41

with a demultiplexor to generate all 28 register address lines, and supplies the necessary

power to the board. Only Long Words (32-bit quantities) should be read or written to

the AM. Any other data type may result in incorrect data transfers.

2.4.8 Operation of the Address module

The AM operates in two distinct modes. Before an application is run on the SDM

system, specific hard addresses must be loaded into the AM and the various registers
must be initialized. This is accomplished in the RESET state as shown in the state

transition diagram, Figure 2.2.

Once set-up is complete, applications can be run on the system. Application pro-

cessing begins when the Control module takes the Address module out of RESET mode
and into RUN mode by clearing the RST status bit in the Command/Status Register.

A single read or write for an application causes the AM to:

1. Execute the Run-state 8192 times. During each execution, the reference address is

compared to one of the hard addresses, and the Hamming distance between them

is calculated and compared to the value in the Limit Register.

2. Visit the HIT state once for every hit encountered during the RUN state.

3. Visit the WAIT state whenever the tag cache gets filled.

4. Visit the DONE state when the entire contents of the Hard Address Memory have

been examined.

Note that the WAIT state and DONE state are identical except for the value of the

DONE status bit.

The procedure for running an application is as follows.

Set-up:

1. The CM sets the RST bit in the Command/Status Register, placing the AM in

the RESET state.

2. The CM loads the Hard Address Memory. This is accomplished by first loading

the Tag Register with the appropriate tag, and then loading the Hard Address

Register. The 256-bit Hard Address Register consists of eight 32-bit registers
which can be loaded in any order. This procedure is repeated once for each hard

address.

3. The CM loads the other registers: the Mask Register, the Limit Register and the

Reference Address Register. The order of access is not important. Also, values

loaded into the registers and the Hard Address Memory will remain intact even

after the AM has been placed in the RESET state. The registers and the Hard

Address Memory will contain random data, however, after a power up.

42 CHAPTER 2. HARDWARE DESCRIPTION

Operating:

1. The CM clears the RST bit in the Command/Status Register, and the state
machine enters the RUN state.

. During each RUN cycle,the next hard address in the Hard Address Memory

(beginning at tag 0 and incrementingto tag 8191) istransferredto the ALU, to
be XORed with the referenceaddress.The resultisthen ANDed with the Mask

Registerand passed to the Bit Counter. The resultpropagates through allfour

stagesofthe Bit Counter and isthen compared tothe Limit Register.Ifthe result

islessthan or equal to the Limit,the HIT statusbitis set and the AM enters

the HIT state.Ifthereisno hit,the AM continuesin the RUN state,examining

the next hard address.When the lasthard addresshas been examined, the AM

entersthe DONE state.

. During a HIT cycle, the Hamming distance is sent to the Tag Cache, along with

the hard address tag. If the Tag Cache is full, the AM enters the WAIT state.

If the last hard address has been examined, the AM enters the DONE state.
Otherwise the AM resumes execution in the RUN state.

. During a WAIT cycle,the AM suspends operation and waits untilthe CM has

read the lastentryinthe Tag Cache. At thatpoint,ifallhard addresseshave been

examined, the AM entersthe DONE state.Otherwise the AM resumes execution

in the RUN state.

5, During a DONE cycle,the AM assertsthe DONE statusbit and performs no

operationuntilthe CM sends itintothe RESET stateby settingthe RST status

bit,or by a power-on reset.

2.4.9 Additional hardware

Beyond the basic board set and workstation, a VME bus card cage and SCSI cable

are also needed. The card cage accommodates at least two 400ram 9U sized cards and

more than eleven 6U 200mm cards. The cable required depends on the workstation
connectors.

Chapter 3

Use of the SDM

3.1 Programmer's Interface

The Programmer's Interfaceprovidesaccessto the SDM from Sun applications.Al-

though programs can be writtenthatdirectlyaccessthe raw SCSI device,itissuggested

thatthe Programmer's Interfacebe used forgreatermodularity and abstraction.Ifthe
detailsofthe SCSI transactionsbetween the ExecutiveModule and the Control Module

are modified,itshould be necessaryonly to update the Programmer's Interfaceand

then recompilethe applications.

3.1.1 Data Types

In the descriptions that follow we shall make use of the data types foldentry, dataword,

addressvec, addressbits, tagaddress, and foldset. These types are defined in the file

sdmcomm.h and are subject to change with future modification of the system. The
current definitions are as follows:

• foldentry is an array of 256 short (16 bit) integers.

• dataword is an array of 256 (32 bit) integers.

• addressvec is an array of 32 unsigned characters used to store a 256 bit address
as a bit vector.

• addressbits is an array of 256 characters used to store a 256 bit address as a

Boolean array.

• tagaddress is an unsigned short, only 13 bits of which are currently used (the least

significant bits), that represents a tag. The valid range of tags is 0 to NUM_TAGS-

1, where NUM_TAGS is currently defined in sdmcomm.h to be 8192.

43

44 CHAPTER 3. USE OF THE SDM

• foldset is an unsigned integer used as a bit vector. Each bit corresponds to one

fold so the number may be used to represent a single fold or a collection of folds.

The following constants are defined in sdmcom.h to reference folds:

NUM_FOLDS 4

FOLD(O) 1

FOLD(l) 2

FOLD(2) 4

FOLD(3) 8
ALL.FOLDS 15

3.1.2 Overview of Routines

The Programmer's Interface consists of a set of C procedures, sclmcomm, c, and a header

file of external declarations, sclmcomm.h. The following procedures are currently pro-
vided:

• OpenSparse, ResetSparse,SelectFoldand CloseSparseare used to acquire and

releasethe SCSI port and to modify the generalstateof the system.

• SparseAddress,ShiftAddress,SparseRead,SparseReadVec, SparseWrite,and Sparse-

WriteVec are the primary Sparseoperations.

• SetLimit and ReadLimit provide access to the current limit on the Hamming

radius.

SetThresholdand ReadThreshold provideaccesstothe currentvalueofthe thresh-

old used in the conversionof solutionfrom a dataword (consistingof 32 bitinte-

gers)to a bitvector.

• SetMask and ReadMask provide accessto the currentaddressmask.

• SetCompMode and ReadCompMode provide access to the activation of the com-

plemented address mode.

SetFoldEntry, ReadFoldEntry, FillFold, ZeroEntireFold, SetHard, ReadHard, Fill-

Hard, and ZeroAllHard provide direct access to the fold data and the hard address

registers.

• SaveSparse and RestoreSparse cause portions of the state of the Sparse to be saved
to or restored from a data file on the Sun.

• pacl_ddr and unpackaddr are utilities for the conversion between the Boolean

array and bit vector representations of addresses.

• SetDebug is used for debugging.

3.1. PROGRAMMER'S INTERFACE 45

Descriptions of Routines

int OpenSparse 0

int CloseSparse 0

OpenSparse performs an open on the SCSI device for read/write access. A single,

successful OpenSparse must be executed before any other Sparse operation is

attempted. CloseSparse, the complement to OpenSparse, performs a close on the

SCSI device, making it available to other applications.

Both OpenSparse and CloseSparse return a value of 0 upon successful completion.

If an error occurs, the value -1 is returned and external variable errno is set to
indicate the cause of the error.

• void ResetSparse O

ResetSparse performs the following actions:

- places the Address Module in "Forced Reset" mode (see Address Module

Hardware Guide),

- clears the complemented address mode flag (see SetCompHode()),

- selects all of the folds (see $electFold()),

- sets the tag bounds to their maximum extent, 0 and NUM_TAGS-1, (see

SetTagBounds ()),and

- dears the tags sets for all of the folds.

ResetSparse should normally be called immediately after OpenSparse.

• void SelectFold(f)

foldset f;

void ReadSelectFold(f)

foldset *f;

SelectFold specifies which folds will be active during subsequent operations such

as SparseAddress, SparseWrite, SparseRead, and SetFoldEntry. The foldset f (see

the description of foldset above) may specify any number of folds from zero to

four. For example:

SelectFold(FOLD (0)) sets fold 0 to be the only active fold,

SelectFold(FOLD(0) [FOLD(1)) sets folds 0 and 1 to active, and

SelectFold(ALL_FOLDS) activates all four folds.

ReadSelectFold sets f to the currently active foldset.

• void SparseAddress(reference.address)

addressvec reference.address;

46 CHAPTER 3. USE OF THE SDM

Setsthe tag setof each the currentlyselectedfoldsto consistofthose tagswhose

correspondinghard addressesmatch reference_address*. See SelectFold,Set-

Mask, SetLimit,SetTagBounds, and SetCompMode.

@ void ShiftAddress(reference_address)

addressvec reference_address;

Sets the tag set of fold 0 to consist of those tags whose corresponding hard ad-

dresses match reference_address 1, and shifts the previous tag set of fold 0 to

fold 1, of fold 1 to fold 2, and of fold 2 to fold 3. Note that SelectFold does not

affect upon the operation of the ShiftAddress routine.

int SparseWrite(data)

dataword data;

int SparseWriteVec(data)
addressvec data;

Executes a Sparse Write operation to each of the currently selected folds using

their current tag sets and specified data word. Returns the total number of hits _.

SparseWriteVec is exactly the same as SparseWrite except that data is a bit vector

indicating increment or decrement in the corresponding counters.

intSparseRead(result)

dataword result;

int SparseReadVec(result)

addressvecresult;

SparseRead executesa Sparse Read operationfrom the currentlyselectedfolds

and storesthe resultingdataword in result. Returns the totalnumber of hits2.

Ifthe number ofhitsiszero,then result willcontainallzeroes.

SparseReadVec is exactlythe same as SparseRead except that result is a bit

vectorindicatingincrement or decrement in the correspondingcounters.

• void SetLimit(limit)

intlimit;

void ReadLimit(limit)

int*limit;

SetLimit setsthe solutionthresholdon the Hamming distance to llmit, and

ReadLimit setslimit to the currentsolutionthreshold.

ZMatches computed with a proper regard for the address mask, the solution threshold, the tag
bounds, and the complemented address mode flag.

2The total number of hits can be regarded as the total number of fold entries contributing to the

result or, equivalently, as the sum over the selected folds of the sizes of their tag sets.

3.1. PROGRAMMER'S INTERFACE 47

void SetThreshold(th)

int th;

void ReadThreshold(th)

int *th;

SetThreshold sets the threshold used by SparseRsadVoc to the value th. A

bit in the vector returned by SparseReadVec will contain a 1 if and only if

the corresponding position in resulting dataword is greater than this threshold.

ReadThreshold sets th to the current threshold.

void SetMask(mask)

addressvec mask;

void ReadMask(mask)

addressvecmask;

SetMask setsthe addressmask used in the computation of matching addresses

to mask. A zero in the mask indicatesthat the correspondingpositionisto be

ignoredduringthe determinationofa match. ReadMask setsmask to the current

valueof the addressmask.

void SetCompMode(bool)

intbool;

int ReadCompMode 0

SetCompMode setsthe value of the complemented address mode flag. If the

value of bool iszero then the flagiscleared,otherwisethe flagisset so that

complemented address mode isused (seeAddress Module Hardware Guide). Re-

setSparse0 alsoclearsthisflag.

ReadCompMode determineswhether the complemented addressmode flagisset

(return1 ifset,0 otherwise.)

void SetTagBounds(low,high)

tagaddress low, high;

ReadTagBounds(low,hlgh)

tagaddress *low, *high;

SetTagBounds sets the low tag bound to low and the high tag bound to high.

During the SparseAddress and ShiftAddress operations, a hard address can only

be considered a hit if its tag is greater than or equal to the low tag bound and if

its tag is less than or equal to the high tag bound. In this way, address matching
can be restricted to a subset of the hard addresses in the Address Module.

ReadTagBounds sets low and high to the current tag bounds.

SetTagBounds (0, NUN_TAGS-1) removes this restriction as to which hard addresses
can be hit.

48 CHAPTER 3. USE OF THE SDM

• void SetFoldEntry(tag,entry)

tagaddress tag;
foldentry entry;

void FiUFold(from,to,pattern)

tagaddress from, to;

unsigned char pattern;

void ZeroEntlreFold 0

void ReadFoldEntry(tag,entry)
tagaddress tag;

foldentry entry;

SetFoldEntry writes entry into the fold entry corresponding to hardware tag tag

in those folds that are currently active. This operation would typically be used
only to initialize the fold.

FiUFold takes the byte pattern and replicates it in the fold memory of the cur-

rently active folds to fill all of those fold entries with tags from from up to and

including to. Like SetFoldEntry, this operation would typically be used only to
initialize the folds.

ZeroEntireFold sets all fold entries to zeroes.

ReadFoldEntry retrieves a fold entry corresponding to hardware tag tag in the fold

that is currently active and stores the result in entry. The result is unspecified if

more than one fold is currently active.

• void SetHard(tag,value)

tagaddress tag;

addressvec value;

void FiUHard(from,to,pattern)
tagaddress from, to;

unsigned char pattern;

void ZeroAllHard 0

void ReadHard(tag,value)

tagaddress tag;

addressvec value;

SetHard sets the hard address value to correspond to the tag value tag.

FillHard takes the byte pattern, replicates to it to form a hard address, and then

does a SetHard with this address and tags from through to, inclusive, _:

ZeroAllHardsets all hard addresses to all zeroes. This has the same effect as

FillIIard(0,NUM_TAGS-1,0x00) but is very fast. _ _:-

ReadHard sets value to the hard address previously stored with tag. Because the

hard address registers of the address module are write-only, the value is obtained

3.1. PROGRAMMER'S INTERFACE 49

from a shadow register which is updated on every SetHard, ZeroAllHard and

RestoreSparse. The value in the shadow register is not guaranteed to be identical

to that used by the address module. In particular, the actual values are unknown

at power up. ZeroAUHard0 can be used to put the registers into a known state.

int SaveSparse(filename)

char *filename;

int RestoreSparse(filen ame)

char *filename;

SaveSparse creates a file with the specified filename and stores the majority of the

current state of the Sparse (the limit, mask, threshold, hard addresses, and fold

entries) into the file. RestoreSparse can then be used to restore that state from
the file.

NOTE: The file will be large (over 16MB with four folds) and the operation can

take a long time.

• packaddr(bool,vec)

addressbits bool;

addressvec vec;

unpackaddr(vec,bool)

addressvec vec;

addressbits bool;

Although none of the Sparse transactions use the Boolean array representation of

the 256 bit addresses, it may be easier for programmers to manipulate addresses

in this format. The unpackaddr routine converts an addressvec (bit vector) into

an addressbits array where each dement is a one g the corresponding bit was set,

zero otherwise. The packaddr routine does the inverse conversion, setting only

those bits whose corresponding elements are not zero.

void SetDebug(levd)

int level;

Sets the debugging level on the Sparse to level. The debugging level specifies

the verbosity of the control module. The default level is NULL, which generates

a minimum of messages.

Bibliography

[1] P. A. Chou. Capacity of the Kanerva associative memory. IEEE Transactions on

Information Theory, 35:281-298, March 1989.

[2] B. K. Flachs. Evaluation of SDM prototype. Technical report, Computer Systems
Laboratory, Stanford University, 1990. In preparation.

[3] J. J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences, USA,

79:2554-2558, April 1982.

[4] P. Kanerva. Sparse Distributed Memory. MIT Press, Cambridge, MA, 1988. A
Bradford Book.

[5] J. D. Keeler. Comparison between Kanerva's SDM and Hopfield-type neural network

models. Cognitive Science, 12:299-329, December 1988.

5O

